Ternary Volatile Random Access Memory based on Heterogeneous Graphene-CMOS Fabric

- **Santosh Khasanvis**, K. M. Masum Habib*, Mostafizur Rahman, Pritish Narayanan, Roger K. Lake* and Csaba Andras Moritz

> University of Massachusetts Amherst *University of California Riverside

Electrical and Computer Engineering

Outline

- Motivation
- Bi-Layer xGNR Device, Latch
- Proposed Memory Cell Ternary GNTRAM
- Evaluation and Comparison with CMOS SRAM
- Summary

Multistate Memory: Motivation & Vision

Source: 2012 ISSCC Tech Trends

Vision – New multi-bit per cell volatile memory with graphene

Challenges with CMOS SRAM

- Slowdown in area scaling (50% down to 30% per generation)
- Increasing leakage concerns

Concept

Current: Single bit/cell

Proposed: Multi-bit/cell with novel graphene structures

Bi-Layer Graphene Nanoribbon Crossbar Device (xGNR) & Application

Graphene Nanoribbon Crossbar Resonant Tunneling Diode - *K. M. M. Habib and R. K. Lake*, University of California Riverside

 Armchair Graphene Nano-Ribbons arranged in a crossbar geometry (xGNR) exhibit Negative Differential Resistance (NDR)

- xGNRs in series form a latch with multiple stable states (A, B & C)
- Ternary data represented by state node (SN) voltage: A–Logic 0, B–Logic 1, & C–Logic 2

Graphene Nanoribbon Tunneling RAM (GNTRAM)

• xGNR latch forms the memory core of a RAM cell

SN - State Node

- Memory cell selection, read and write operations performed using access transistors
- Schottky diode and Sleep FET mitigate stand-by power consumption

Ternary GNTRAM Operation

Proposed Physical Implementation – Integration with CMOS

- Heterogeneous integration between CMOS and Graphene for validation and benchmarking
- MOS transistors and metal layers for access and routing
- Schottky contact^{*} enabled by interaction between semiconducting GNR and metal

^{*}X. Guan; et al.; , "Modeling of schottky and ohmic contacts between metal and graphene nanoribbons using extended hückel theory (EHT)-based NEGF method," IEDM 2008.

Methodology & Benchmarking

- HSPICE simulation for concept validation, performance and power evaluation
- 16nm Grid-based design rules used to evaluate GNTRAM area

16nm Design Rules

1D Gridded Design	M1, M2 Interconnect	Poly	
Pitch (16nm technology node)	40~60 nm	60~80 nm	

C. Bencher, et al.. "Gridded design rule scaling: Taking the CPU toward the 16nm node", Proc. SPIE 7274, 2009

Comparison with 16nm High Performance (HP) CMOS SRAM

	GNT RAM (Per Cell, 1.585 bits)	GN (P	NT RAM Per Bit)	CMOS 6T Scale SRAM Cell	ed	CMOS Gridded 8T SRAM Cell
RAM Cell Area (µm²)	0.03-0.06	0.019-0.038		0.026-0.064		0.034-0.067
Active Power (µW)	2.1	1.31		2.1		2.41
Standby Power (pW)	22	13.9		6152		15552
Performance GNT RAM			CMOS 6T Scaled SRAM Cell		CMOS Gridded 8T SRAM Cell	
Read Time (ps)	9.3		8.8		7.7	
Write Time (ps)	16.3		18.4		18	

Density Benefit (per bit) : Upto 1.77x vs. SRAMs Power Savings (per bit): Upto 1.84x (Active) and 1196x (Leakage) vs. HP SRAMs Performance: Comparable to HP CMOS SRAMs

Summary

- Novel ternary memory (1.5 bits/cell) presented with heterogeneous CMOS-Graphene implementation
- Density and power benefits vs. 16nm CMOS SRAMs with comparable performance
- Next Steps: Increasing number of states/cell a new dimension for scaling
- Possibility of all-graphene fabrics as graphene technology matures

Thank You!

<u>Acknowledgements:</u> Collaboration with Prof. Roger Lake, UC Riverside

