JVIassAmhe

Ternary Volatile Random Access Memory based on
Heterogeneous Graphene-CMOS Fabric

- Santosh Khasanvis, K. M. Masum Habib*, Mostafizur Rahman,
Pritish Narayanan, Roger K. Lake* and Csaba Andras Moritz

University of Massachusetts Amherst
*University of California Riverside

% U SS I%UNIVERSITY OF CALIFORNIA
) IVERSIDE
Electrical and Computer Engineering




JMassAmbhe
Outline

= Motivation

= Bi-Layer xGNR Device, Latch

= Proposed Memory Cell - Ternary GNTRAM
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Multistate Memory: Motivation & Vision

SRAM Area Trends .
Challenges with CMOS SRAM
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Source: 2012 ISSCC Tech Trends

Vision — New multi-bit per cell
volatile memory with graphene

Current: Single bit/cell ~ Proposed: Multi-bit/cell with
novel graphene structures
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=

-Layer Graphene Nanoribbon Crossbar Device (xGNR) & Application
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‘Statc- Node Voltage (Volts)
XGNRs in series form a latch with multiple stable states (A, B & C)

Ternary data represented by state node (SN) voltage: A—Logic 0, B—Logic 1, & C—Logic 2
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Graphene Nanoribbon Tunneling RAM (GNTRAM)

xGNR Latch Memory Circuit Proposed Memory Cell

Restore
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= xGNR latch forms the memory core of a RAM cell SN - State Node
= Memory cell selection, read and write operations performed using access
transistors

= Schottky diode and Sleep FET mitigate stand-by power consumption
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Ternary GNTRAM Operation

Restore Write Operation

= Write Operation:
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Proposed Physical Implementation — Integration with CMOS
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Graphene Layer
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= Heterogeneous integration between CMOS and Graphene for validation and
benchmarking

= MOS transistors and metal layers for access and routing
= Schottky contact™ enabled by interaction between semiconducting GNR and

metal
*X. Guan,; et al.; , "Modeling of schottky and ohmic contacts between metal and graphene nanoribbons using extended hiickel theory (EHT)-based NEGF method,“
IEDM 2008.
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Methodology & Benchmarking

= HSPICE simulation for concept validation, performance and power evaluation

16nm Design Rules
1D Gridded MI, M2

= 16nm Grid-based design rules used to evaluate GNTRAM area Design | Interconnect

Putch (I6nm 4060 nm 60--80nm
technology node)

Poly

C. Bencher, et al.. “Gridded design rule scaling: Taking
the CPU toward the 16nm node”, Proc. SPIE 7274, 2009

Comparison with 16nm High Performance (HP) CMOS SRAM

GNT RAM GNT RAM CMOS 6T Scaled CMOS Gridded 8T
(Per Cell, 1.585 bits) (Per Bit) SRAM Cell SRAM Cell
RAM Cell Area (um?) 0.03-0.06 0.019-0.038 0.026-0.064 0.034-0.067
Active Power (uW) 2.1 1.31 2.1 2.41
Standby Power (pW) 22 13.9 6152 15552
Performance GNT RAM CMOS 6T Scaled SRAM CMOS Gridded 8T SRAM
Cell Cell
Read Time (ps) 9.3 8.8 7.7
Write Time (ps) 163 18.4 18

Density Benefit (per bit) : Upto 1.77x vs. SRAMs
Power Savings (per bit): Upto 1.84x (Active) and 1196x (Leakage) vs. HP SRAMs
Performance: Comparable to HP CMOS SRAMs
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Summary

= Novel ternary memory (1.5 bits/cell) presented with heterogeneous
CMOS-Graphene implementation

= Density and power benefits vs. 16nm CMOS SRAMs with
comparable performance

= Next Steps: Increasing number of states/cell — a new dimension for
scaling

= Possibility of all-graphene fabrics as graphene technology matures

Thank You!
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